iklan banner

Contoh Soal Fungsi Komposisi Dan Pembahasan Lengkap

Contoh Soal Fungsi Komposisi Dan Pembahasan Lengkap | Kali ini saya akan membagikan beberapa pola soal fungsi komposisi. Sebelum kami menuliskan pola soal dan pembahasannya saya akan menandakan apa itu Fungsi.

Fungsi adalah kekerabatan khusus yang memasangkan suatu himpunan sempurna satu dengan anggota himpunan yang lain. Contohnya terdapat himpunan A dan himpunan B, kekerabatan A ke B disebut fungsi apabila anggota A mempunyai pasangan sempurna satu di B. Ini berarti A hanya boleh mempunyai satu pasangan di B, tetapi hukum tersebut tidak berlaku di B (B boleh mempunyai pasangan lebih dari satu di A).



Pengertian Fungsi Komposisi

Fungsi Komposisi yaitu penggabungan operasi dari dua fungsi secara berurutan sehingga menghasilkan sebuah fungsi yang baru. Lambang dari fungsi komposisi yaitu  "o" atau dibaca bundaran.


Contoh Soal Fungsi Komposisi Dan Pembahasan Lengkap I


sumber : matematikastudycenter.com

Soal Nomor 1
Diberikan dua buah fungsi masing-masing f(x) dan g(x) berturut-turut adalah:
f(x) = 3x + 2
g(x) = 2 − x
Tentukan:
a) (f o g)(x)
b) (g o f)(x)
Pembahasan Data:
f(x) = 3x + 2
g(x) = 2 − x

a) (f o g)(x)

"Masukkan g(x) nya ke f(x)"

sehingga:
(f o g)(x) = f ( g(x) )
= f (2 − x)
= 3(2 − x) + 2
= 6 − 3x + 2
= − 3x + 8

b) (g o f)(x)

"Masukkan f (x) nya ke g (x)"

sehingga:
(g o f)(x) = g ( f (x) )
= g ( 3x + 2)
= 2 − ( 3x + 2)
= 2 − 3x − 2
= − 3x

Soal Nomor 2 Diberikan dua buah fungsi:
f(x) = 3x2 + 4x + 1
g(x) = 6x

Tentukan:
a) (f o g)(x)
b) (f o g)(2)

Pembahasan Diketahui:
f(x) = 3x2 + 4x + 1
g(x) = 6x

a) (f o g)(x)
= 3(6x)2 + 4(6x) + 1
= 108x2 + 24x + 1
= 18x2 + 24x + 1

b) (f o g)(2)

(f o g)(x) = 108x2 + 24x + 1
(f o g)(2) = 108(2)2 + 24(2) + 1
(f o g)(2) = 432 + 48 + 1 = 481
Soal Nomor 3
Diketahui f(x) = x2 + 1 dan g(x) = 2x − 3, maka (f o g)(x) = ....
A. 4x2 − 12x + 10
B. 4x2 + 12x + 10
C. 4x2 − 12x − 10
D. 4x2 + 12x − 10
E. − 4x2 + 12x + 10
(Dari soal Ebtanas Tahun 1989)

Pembahasan
f(x) = x2 + 1
g(x) = 2x − 3
(f o g)(x) =.......?

Masukkan g(x) nya ke f(x)
(f o g)(x) =(2x − 3)2 + 1
(f o g)(x) = 4x2 − 12x + 9 + 1
(f o g)(x) = 4x2 − 12x + 10

Soal Nomor 4
Diketahui fungsi f(x) = 3x − 1 dan g(x) = 2x2 + 3. Nilai dari komposisi fungsi (g o f)(1) =....
A. 7
B. 9
C. 11
D. 14
E. 17
(Dari soal UN Matematika Sekolah Menengan Atas IPA - 2010 P04)

Pembahasan
Diketahui:
f(x) = 3x − 1 dan g(x) = 2x2 + 3
(g o f)(1) =.......

Masukkan f(x) nya pada g(x) lalu isi dengan 1
(g o f)(x) = 2(3x − 1)2 + 3
(g o f)(x) = 2(9x2 − 6x + 1) + 3
(g o f)(x) = 18x2 − 12x + 2 + 3
(g o f)(x) = 18x2 − 12x + 5
(g o f)(1) = 18(1)2 − 12(1) + 5 = 11

Soal Nomor 5
Diberikan dua buah fungsi:
f(x) = 2x − 3
g(x) = x2 + 2x + 3

Jika (f o g)(a) = 33, tentukan nilai dari 5a

Pembahasan
Cari (f o g)(x) terlebih dahulu
(f o g)(x) = 2(x2 + 2x + 3) − 3
(f o g)(x) = 2x2 4x + 6 − 3
(f o g)(x) = 2x2 4x + 3
33 = 2a2 4a + 3
2a2 4a − 30 = 0
a2 + 2a − 15 = 0
Faktorkan:
(a + 5)(a − 3) = 0
a = − 5 atau a = 3
Sehingga
5a = 5(−5) = −25 atau 5a = 5(3) = 15

Bagaimana kalau yang diketahui yaitu rumus (f o g)(x) atau (g o f)(x) nya lalu diminta untuk memilih f(x) atau g(x) nya, ibarat pola berikutnya:

Soal Nomor 6
Diketahui :
(f o g)(x) = − 3x + 8
dengan
f(x) = 3x + 2
Tentukan rumus dari g(x)

Pembahasan
f(x) = 3x + 2
(f o g)(x) = f (g(x))
− 3x + 8 = 3(g(x)) + 2
− 3x + 8 − 2 = 3 g(x)
− 3x + 6 = 3 g(x)
− x + 2 = g(x)
atau
g(x) = 2 − x

Tengok lagi pola nomor 1, dimana f(x) = 3x + 2 dan g(x) = 2 − x akan menghasilkan (f o g)(x) = − 3x + 8

Soal Nomor 7
Diberikan rumus komposisi dari dua fungsi :
(g o f)(x) = − 3x
dengan
g(x) = 2 − x
Tentukan rumus fungsi f(x)

Pembahasan
(g o f)(x) = − 3x
(g o f)(x) = g(f(x))
− 3x = 2 − (f(x))
− 3x = 2 − f(x)
f(x) = 2 + 3x
atau
f(x) = 3x + 2

Cocokkan dengan pola nomor 6.
Soal Nomor 8
Diketahui:
g(x) = x − 2 dan,
(f o g)(x) = 3x − 1

Tentukan rumus f(x)

Pembahasan
Buat permisalan dulu:
x − 2 = a yang pertama ini nanti untuk ruas kiri dan,
x = a + 2 yang kedua ini untuk ruas kanan.

Dari definisi (f o g)(x)


Masukkan permisalan tadi


Soal Nomor 9
Diketahui:
g(x) = x2 + 3x + 2 dan,
(f o g)(x) = 4x2 + 12x + 13

Tentukan rumus f(x)

Pembahasan
Buat dua macam permisalan dulu ibarat ini:


Dari definisi (f o g)(x)


Masukkan permisalan tadi

Soal Nomor 10
Diberikan fungsi-fungsi sebagai berikut:
f(x) = 2 + x
g(x) = x2 − 1
h(x) = 2x

Tentukan rumus dari (h o g o f)(x)

Pembahasan
Bisa dengan cara satu-satu dulu, mulai dari g bundaran f
(g o f)(x) = (2 + x)2 − 1
= x2 + 4x + 4 − 1
= x2 + 4x + 3

Masukkan akhirnya ke fungsi h(x) sehingga didapatkan
(h o g o f)(x) = 2(x2 + 4x + 3)
= 2x2 + 8x + 6

Soal Nomor 11
Diketahui fungsi f(x) = x - 4 dan g(x) = x2 - 3x + 10. Fungsi komposisi (gof)(x) =….
A. x2 - 3x + 14
B. x2 - 3x + 6
C. x2 - 11x + 28
D. x2 -11x + 30
E. x2 -11x + 38

Pembahasan
Dari soal un matematika tahun 2013, dengan cara yang sama diperoleh

Soal Nomor 12
Diketahui:
F(x) = 3x + 5
Untuk x = 2 tentukan nilai dari:
F(x + 4) + F(2x) + F(x2)

Pembahasan
x = 2, maka
F(x + 4) = F(2 + 4) = F(6) = 3(6) + 5 = 23
F(2x) = F(2⋅2) = F(4) = 3(4) + 5 = 17
F(x2) = F(22) = F(4) = 3(4) + 5 = 17

Jadi:
F(x + 4) + F(2x) + F(x2) = 23 + 17 + 17 = 57

Contoh Soal Fungsi Komposisi Dan Pembahasan Lengkap II


sumber : untukku-saja.blogspot.com

Nomor 1Jika suatu fungsi f(x) = x + 2 dan g(x) = x + 5 maka f o g(x) adalah.....
A. x + 3
B. x + 7
C. 2x + 3
D. 2x + 7
E. 2x2 + 5

Pembahasan
f o g(x) berarti x pada f(x) diganti dengan g(x)
f o g(x) = g(x) + 2 = (x + 5) + 2 = x + 7
Jawaban: B

Nomor 2Jika f(x) = x -2 dan g(x) = 2x + 3 maka g o f(x) adalah...
A. x - 1
B. x + 2
C. 2x - 1
D. 2x + 2
E. 4x + 4

Pembahasan
g o f(x) berarti x pada g(x) diganti dengan f(x).
g o f(x) = 2 f(x) + 3
g o f(x) = 2 (x - 2) + 3 = 2x - 4 + 3 = 2x - 1
Jawaban: C

Nomor 3Jika f(x) = 2x2 + 5 dan g(x) = x + 1 maka f o g(1) = ....
A. 5
B. 8
C. 11
D. 13
E. 17

Pembahasan:Tentukan terlebih dahulu f o g(x)
f o g(x) = 2 g(x) + 5 = 2 (x + 1)2 + 5 = 2 (x2 + 2x + 1) + 5 = 2x2 + 4x + 2 + 5
f o g(x) = 2x2 + 4x + 7
Ganti x pada f o g(x) dengan 1
f o g(1) = 2 (1)2 + 4 (1) + 7 = 13
Jawaban: D

Nomor 4Jika f o g(x) = 2x + 4 dan g(x) = x + 1 maka f(x) = ...
A. x - 1
B. x + 2
C. 2x + 1
D. 2x + 2
E. 2x + 4

Pembahasan
Tentukan terlebih dahulu invers dari g(x) yaitu
g(x) = x + 1 sehingga x = g(x) - 1 sehingga:
g-1(x) = x - 1 ( g(x) diganti dengan x)
Ganti x pada f o g(x) dengan g-1(x)
f(x) = 2 g-1(x) + 4 = 2 (x - 1) + 4 = 2x - 2 + 4 = 2x + 2
Jawaban: D

Nomor 5Jika f o g(x) = 2x2 + 4 dan f(x) = x - 2 maka g(x) = ....
A. x - 2
B. x + 4
C. 2x2 + 2
D. 2x2 + 4
E. 2x2 + 6

Pembahasan
Untuk memilih g(x) caranya yaitu ganti x pada f(x) dengan g(x).
g(x) - 2 = 2x2 + 4
g(x) = 2x2 + 4 + 2 = 2x2 + 6
Jawaban: E

Nomor 6 (UN 2014)Diketahui f : R → R, g : R → R, f(x) = x2 + x - 1 dan g(x) = 2x + 1. Hasil dari f o g(x) adalah...
A. 2x2 + 2x - 1
B. 2x2 - 2x - 1
C. 4x2 + 6x + 1
D. 4x2 + 2x + 1
E. 4x2 + 6x - 1

Pembahasan
Ganti x pada f(x) dengan g(x)
f o g(x) = g(x)2 + g(x) - 1 = (2x + 1)2 + (2x + 1) - 1 = 4x2 + 4x + 1 + 2x + 1 - 1 = 4x2 + 6x + 1
Jawaban: C

Nomor 7 (UN 2014)Diketahui f(x) = - 2x + 3 dan g(x) = x2 - 4x + 5. Komposisi fungsi g o f(x) =...
A. 4x2 - 4x + 2.
B. 4x2 - 4x + 7.
C. 4x2 - 6x + 7.
D. 4x2 + 2x + 2.
E. 4x2 + 8x + 2.

Pembahasan
Ganti x pada g(x) dengan f(x).
g o f(x) = f(x)2 - 4f(x) + 5 = (-2x + 3)2 - 4 (-2x + 3) + 5 = 4x2 - 12x + 9 + 8x - 12 + 5
g o f(x) = 4x2 - 4x + 2
Jawaban: A

Nomor 8 (UN 2014)Diketahui fungsi f : R → R, g : R → R dirumuskan dengan f(x) = 2x - 1 dan
, x ≠ 2. Fungsi Invers dari f o g(x) = ....
A. (2x + 4) / (x + 3)
B. (2x - 4) / (x + 3)
C. (2x + 4) / (x - 3)
D. (3x - 2) / (2x + 2)
E. (3x - 3) / (-2x + 2)

Pembahasan
Terlebih dahulu tentukan f o g(x) dengan cara mengganti x pada f(x) dengan g(x).

Catatan:
Cara menginvers fungsi pembagian f(x) = (ax + b) / (cx + d) maka f-1(x) = (-dx + b) / (cx - a)
Jawaban: B

Nomor 9 (UN 2014)Diketahui f(x) = 4x + 2 dan g(x) = (x - 3) / (x + 1), x ≠ - 1. Invers dari g o f(x) adalah...
A. (4x + 1) / (3x + 4)
B. (4x - 1) / (-3x + 4)
C. (3x - 1) / (4x + 4)
D. (3x + 1) / (4 - 4x)
E. (3x + 1) / (4x + 4)

Pembahasan
Ganti x pada g(x) dengan f(x).

Jawaban: D


Contoh Soal Dan Pembahasan Tentang Fungsi Komposisi Dan Invers

sumber :www.ajarhitung.com
1.    Diketahui kalau yaitu invers dari f, maka = ...
a.    2/3 (1 + x)
b.    2/3 (1 – x)
c.    3/2 (1 + x)
d.    – 3/2 (x – 1)
e.    – 2/3 (x + 1)
PEMBAHASAN:
Ingat rumus ini ya:  kalau , maka:

JAWABAN: A

2.    Diketahui fungsi f(x) = 2x + 3 dan g(x) = x2 – 2x + 4. Komposisi fungsi (g o f)(x) yaitu ...

PEMBAHASAN:
(g o f)(x)   = g(f(x))
                = g(2x + 3)
          
JAWABAN: C

3.    Diketahui f(x) = x + 4 dan g(x) = 2x maka = ...
a.    2x + 8
b.    2x + 4
c.    ½ x – 8
d.    ½ x – 4
e.    ½ x – 2
PEMBAHASAN:
(f o g)(x) = f(g(x))
              = f(2x)
              = 2x + 4
Kita cari invers dari (f o g)(x) yaitu:
(f o g)(x) = 2x + 4
y = 2x + 4
2x = y – 4
x = (y-4)/2
x = ½ y – 2
maka, = ½ x – 2
JAWABAN: E

4.    Fungsi f ditentukan , x ≠ 3, kalau invers dari f maka (x + 1) = ...

PEMBAHASAN:
Ingat lagi ya, kalau

Sehingga:

JAWABAN: D

5.    Diketahui , dan yaitu invers dari f, maka (x) = ...
 
PEMBAHASAN:
Kita gunakan rumus: jika

JAWABAN: B

6.    Diketahui f(x) = 2x + 5 dan , x ≠ -5 maka (f o g)(x) = ...

PEMBAHASAN:

JAWABAN: D

7.    Invers dari fungsi , x ≠ 4/3 adalah(x) = ...
  
PEMBAHASAN:
Rumusnya: jika

JAWABAN: A

8.    Diketahui fungsi f(x) = 3x – 1 dan . Nilai dari komposisi fungsi (g o f)(1) = ...
a.    7
b.    9
c.    11
d.    14
e.    17
PEMBAHASAN:
(g o f)(x)     = g(f(x))
                  = g(3x – 1)
            

JAWABAN: C

9.    Jika dan f-1 invers dari f, maka (x) = -4 untuk nilai x sama dengan ...
a.    -2
b.    2
c.    – ½
d.    -3
e.    – 1/3
PEMBAHASAN:
Kita pakai rumus: kalau

     -2x + 1 = -4x
     -2x + 4x= -1
     2x = -1
     x = - ½
JAWABAN: C

10.    Jika g(x) = x + 1 dan maka f(x) = ...

PEMBAHASAN:


JAWABAN: B

11.    Diketahui , x ≠ 5/6 dan fungsi invers dari f(x) yaitu (x). Nilai dari (2) = ...
a.    14/3
b.    17/14
c.    6/21
d.    – 17/14
e.    – 14/3
PEMBAHASAN:
Kita pakai rumus: jika


JAWABAN: C

12.    Diketahui:
 , dengan x ≥ -4 dan x ∊ R. Fungsi komposisi (g o f)(x) yaitu ...
a.    2x – 4
b.    x – 2
c.    x + 2
d.    x
e.    2x
PEMBAHASAN:

JAWABAN: D

13.    Jika dan yaitu invers dari f, maka (x + 1) = ...
 
PEMBAHASAN:
Kita pakai rumus: kalau

JAWABAN: A

14.    Diketahui f : R --> R dan g : R --> R, didefinisikan dengan dan g(x) = 2 sin x. Nilai (f o g)(- ½ π) yaitu ...
a.    -4
b.    2
c.    3
d.    6
e.    12
PEMBAHASAN:
(f o g)(x) = f(g(x))
               = f(2 sin x)
         

JAWABAN: A

15.    Suatu pemetaan f : R --> R, g : R --> R dengan dan g(x) = 2x + 3 maka f(x) = ...

PEMBAHASAN:


JAWABAN: A

16.    Diketahui f : x --> x + 2 dan h : x --> x^2 – 2. Jika maka g(x) = ...
a.    2x + 3
b.    2x + 6
c.    2x + 9
d.    x + 5
e.    x – 3
PEMBAHASAN:

JAWABAN: B

17.    Jika dan g(x) = 2x + 4 maka (x) = ...

PEMBAHASAN:


Untuk mencari inversnya, kita gunakan rumus:

JAWABAN: E

18.    Jika maka fungsi g yaitu g(x) = ...
a.    2x – 1
b.    2x – 3
c.    4x – 5
d.    4x – 3
e.    5x – 4
PEMBAHASAN:

     g(x) + 1 = 4(x – 1)
     g(x) = 4x – 4 – 1
     g(x) = 4x – 5
JAWABAN: C

19.    Fungsi f : R--> R dan g : R --> R ditentukan oleh f(x) = 2x + 5 dan g(x) = x + 2 maka memetakan x ke ...

PEMBAHASAN:
(f o g)(x) = f(g(x))
              = f(x + 2)
              = 2 (x + 2) + 5
              = 2x + 4 + 5
              = 2x + 9
(f o g)(x) = 2x + 9
y = 2x + 9
2x = y – 9
x = (y - 9)/2
= (x - 9)/2
JAWABAN: E

20.    Jika f(x) = √x + 3 maka (x) = ...
 
PEMBAHASAN:
      f(x) = √x + 3
     y = √x + 3
     y – 3 = √x

JAWABAN: C

21.    Diketahui untuk setiap bilangan real x ≠ 0. Jika g : R --> R yaitu suatu fungsi sehingga (g o f)(x) = g(f(x)) = 2x + 1 maka fungsi invers g-1(x) = ...

PEMBAHASAN:

Maka:

JAWABAN: D

22.    Diketahui , x ≠ - ¼ . Jika yaitu invers f, maka(x – 2) = ...

PEMBAHASAN:
Kita pakai rumus: kalau

JAWABAN: A

23.    Invers dari yaitu ...

PEMBAHASAN:


JAWABAN: D

24.    Jika , maka tempat asal dari (g o f)(x) yaitu ...
a.    x ≥ 8
b.    -8 ≤ x ≤ 8
c.    x ≥ 5
d.    -5 ≤ x ≤ 5
e.    5 ≤ x ≤ 8 atau x > 8
PEMBAHASAN:

Sehingga tempat asal dari (g o f)(x) adalah:

Dari (i) dan (ii) diperoleh:
5 ≤ x < 8 atau x > 8
JAWABAN: E

25.    Diberikan fungsi f dan g dengan f(x) = 2x + 1 dan , x ≠ 1 maka invers dari fungsi g yaitu g-1(x) = ...

PEMBAHASAN:


JAWABAN: A

Demikianlah Contoh Soal Fungsi Komposisi Dan Pembahasan Lengkap. Smoga bermanfaat. Jangan lupa share kepada teman - teman kau yang membutuhkannya.

Sumber http://www.contohsoaljawab.com/

0 Response to "Contoh Soal Fungsi Komposisi Dan Pembahasan Lengkap"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel