Diskusi Soal Perihal Sistem Persamaan Linear Kuadrat (Splk)
Soal pertama tampaknya perihal Sistem Persamaan Linear Kuadrat, soalnya kurang lebih menyerupai berikut ini.
Gambarlah grafik fungsi $y=x^{2}-6x+8$ yang berpotongan dengan grafik fungsi $y=7-4x$! Tentukan titik perpotongan grafik tersebut!
Kalau untuk menggambarnya serahkan kepada saya, sahut Ema.
Untuk menggambar grafik $y=7-4x$
#Kita cari titik potong terhadap sumbu-$x$ sehingga $y=0$.
$y=7-4x$
$0=7-4x$
$4x=7$
$x=\frac{7}{4}$
Titik potong terhadap sumbu-$x$ yakni $(\frac{7}{4},0)$.
##Kita cari titik potong terhadap sumbu-$y$ sehingga $x=0$.
$y=7-4x$
$y=7-4(0)$
$y=7$
Titik potong terhadap sumbu-$y$ yakni $(0,7)$.
Dengan menghubungkan kedua titik tersebut dapatlah grafik $y=7-4x$.
Sekarang bagaimana menggambar $y=x^{2}-6x+8$, fungsi ini di sebuu dengan istilah Fungsi Kuadrat
#Kita cari titik potong terhadap sumbu-$x$ sehingga $y=0$.
$y=x^{2}-6x+8$
$0=x^{2}-6x+8$
$0=(x-4)(x-2)$
$x=4$ atau $x=2$
Titik potong terhadap sumbu-$x$ yakni $(4,0)$ dan $(2,0)$
##Kita cari titik potong terhadap sumbu-$y$ sehingga $x=0$.
$y=x^{2}-6x+8$
$y=0^{2}-6(0)+8$
$y=8$
Titik potong terhadap sumbu-$y$ yakni $(0,8)$.
###Kita cari klimaks $x_{p},y_{p}$ dari $y=x^{2}-6x+8$
$x_{p}=-\frac{b}{2a}$
$x_{p}=-\frac{-6}{2(1)}$
$x_{p}=-3$
$x_{p}=-3$ ini juga disebut dengan sumbu simetri.
$y_{p}=-\frac{D}{4a}$
$x_{p}=-\frac{b^{2}-4ac}{4a}$
$x_{p}=-\frac{(-6)^{2}-4(1)(8)}{4(1)}$
$x_{p}=-\frac{36-32}{4}=1$
Titik puncak $y=x^{2}-6x+8$ yakni $-3,1$
Dengan menghubungkan ketiga titik diatas dengan garis melengkung dengan sumbu simetri $x_{p}=-3$ dapatlah grafik $y=x^{2}-6x+8$.
Jika kita gambar $y=x^{2}-6x+8$ dan $y=7-4x$, kurang lebih menyerupai berikut ini:
Untuk mencari titik potongnya, kita coba dengan mensubstitusikan kedua kurva $y=x^{2}-6x+8$ dan $y=7-4x$.
$y=y$
$x^{2}-6x+8=7-4x$
$x^{2}-6x+4x+8-7=0$
$x^{2}-2x+1=0$
$(x-1)(x-1)=0$
$x=1$
Maka ketika $x=1$ kita peroleh nilai $y=7-4x=7-4(1)=3$.
Titik perpotongan grafik yakni $(1,3)$.
Mudah-mudahan, yang membaca ngerti iya Mat, seru Tika sesudah final mengerjakan soalnya.
Jika ada masukan yang sifatnya membangun terkait problem Diskusi Soal Tentang Sistem Persamaan Linear Kuadrat (SPLK), silahkan disampaikan, kami dengan bahagia hati segera menanggapinyaCMIIWπ.
Jangan Lupa Untuk Berbagi πShare is Caring π dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLEπ
Video pilihan khusus untuk Anda π Bagaimana perkalian dikerjakan dengan cara pilar (*pintar bernalar);
0 Response to "Diskusi Soal Perihal Sistem Persamaan Linear Kuadrat (Splk)"
Posting Komentar