iklan banner

Pembuktian (A-B)2 = A2-2Ab+B2

Salah satu bentuk penguraian dalam aljabar yang sering anda temui adalah, (a-b)2 = a2-2ab+b2 , kemudian bagaimana menerangkan ini? Memang secara aljabar memang begitu seharusnya. Tetapi ini dapat dibilang agak abnormal jikalau hanya mengikuti hukum aljabar.

Untuk pembuktian yang lebih real, salah satunya dapat dibuat pembuktian dalam geometris. Sekarang perhatikan gambar persegi di bawah ini. Saya mempunyai persegi / bujur kandang dengan panjang sisi a.
Lalu sisi persegi tersebut aku potong b pada sisi horizontal dan b pada sisi vertikal. Bisa digambarkan ibarat ini.


Luas Total=a.a = a2
L(i)= (a-b)(a-b)=(a-b)2
L(ii)= b.(a-b) = ab-b2
L(iii)= (a-b).b= ab-b2
L(iv)=b.b= b2

Ltotal = L(i)+L(ii)+L(iii)+L(iv)
L(i)= Ltotal -L(ii)-L(iii)-L(iv)
(a-b)2 = a2 -(ab-b2)-(ab-b2)-b2        
(a-b)2 = a2 -ab+b2-ab+b2-b2
(a-b)2 = a2 -2ab+b2

Sekarang anda telah melihat bagaimana pembuktian dari (a-b)2 = a2 -2ab+b2 
Baca juga: Pembuktian a2+2ab+b2 
Sumber http://www.marthamatika.com/

0 Response to "Pembuktian (A-B)2 = A2-2Ab+B2"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel