iklan banner

Rotation Of Two-Dimensional Transformation

Rotation on a plane is determined by:
  • Rotation center point
  • Large angle of rotation
  • Direction of rotation angle

The direction of rotation is said to be positive if it is anticlockwise and the direction of rotation is negative if it is handled with the hands of the clock.

1. Rotation with Center O (0, 0)


Rotation formula with the center O(0, 0)

x' = x cos θ - y sin θy' = x sin θ + y cos θ

2. Rotation with center P (a, b)


Rotational formula with center P (a, b)

x' - a = (x - a) cos θ - (y - b) sin θy' - b = (x - a) sin θ + (y - b) cos θ

Example:
Please determine the shadow from the point A(2, 3) when rotated by the 90° corner counterclockwise with the center P (1, -6)!

Answer:
Rotation 90° counterclockwise means θ = 90°
x' - a = (x - a) cos θ - (y - b) sin θ
x' - 1 = (2 - 1) cos 90°- (-3 - (-6)) sin 90°
x' - 1 = cos 90° - 3 sin 90°
x' - 1 = 0 - 3
x' - 1 + 1 = -3 + 1
x' = -2

y' - b = (x - a) sin θ + (y - b) cos θ
y' - (-6) = (2 - 1) sin 90° + (-3 - (-6)) cos 90°
y' + 6 = sin 90° + 3 cos 90°
y' + 6 = 1 + 0
y' + 6 - 6 = 1 - 6
y' = -5

So the shadow coordinates are A'(- 2, -5).

Similarly this article.
Sorry if there is a wrong word.
The end of word wassalamualaikum wr. wb

Referensi :
  • To'Ali's book math group accounting and sales

Sumber http://matematikaakuntansi.blogspot.com

0 Response to "Rotation Of Two-Dimensional Transformation"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel